Helsinki University of Technology

Laboratory for Theoretical Computer Science
Harri Haanpää (tel. 5243)

T-79.1002 Introduction to Theoretical Computer Science Y (2 ECTS)
 Exam Thu 20 December 2007, 1-4 p.m.

Write down on each answer sheet:

- Your name, department, and student id
- The text: "T-79.1002 Introduction to Theoretical Computer Science Y 20.12.2007"
- The total number of answer sheets you are submitting for grading

1. Describe each of the following languages as a finite automaton.
(a) $\left\{w \in\{0,1\}^{*}| | w|\geq 2,|w|\right.$ is even $\}$,
$3 p$.
(b) $\left\{w \in\{0,1\}^{*}| | w \mid \geq 3, w\right.$ starts with 110 or ends with 010$\}$, $3 p$.
(c) $\left\{w \in\{a, b, c\}^{*} \mid w\right.$ contains neither $a a$ nor $b c$ as a substring $\}$. $4 p$.
2. Describe each of the following languages as a regular expression.
(a) $\left\{w \in\{0,1\}^{*}| | w|\geq 2,|w|\right.$ is even $\}$, 3p.
(b) $\left\{w \in\{0,1\}^{*}| | w \mid \geq 3, w\right.$ starts with 110 or ends with 010$\}$, $3 p$.
(c) $\left\{w \in\{a, b, c\}^{*} \mid w\right.$ contains $a a$ or $b c$ as a substring $\}$. $4 p$.
3. Consider strings over the alphabet $\{0,1\}$. Let $n_{0}(w)$ denote the number of 0 s in the string w. Let

$$
L_{1}=\left\{0^{i} 1^{j} \mid i>j \geq 0\right\}
$$

and

$$
L_{2}=\left\{w \mid n_{0}(w) \leq 3\right\}
$$

Give context-free grammars that produce L_{1} and $L_{1} \cup L_{2}$.
$10 p$.
4. Justify the claim: if language $L \subseteq\{a, b, c\}^{*}$ can be recognized by a finite automaton, then so can language $L^{\prime} \subseteq\{a, b\}^{*}$, that is obtained by replacing each c in the strings of L with the string $a b$.
$10 p$.

