1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the mapping defined by condition

$$
z=x+\mathrm{i} y \mapsto x^{3}+\mathrm{i}(1-y)^{3} .
$$

Find those points z in the complex plane, where f is
(a) differentiable,
(b) analytic.
(c) Find the derivative $f^{\prime}(z) \in \mathbb{C}$ of f at those points where it exists.
2. Find a Möbius mapping, that maps domain $\{z \in \mathbb{C}||z-1|<1\}$ to domain $\{z \in \mathbb{C} \mid \operatorname{Re} z>1\}$.
3. Find the value of function

$$
f: f(z)=\oint_{\gamma} \frac{2 w^{2}-w-1}{w(w-z) \mathrm{e}^{\pi i}(w-1)} \mathrm{d} w
$$

at points
(a) $z=1$
(b) $z=2$
(c) $z=4$
when integration is performed along path γ that parametrizes circle

$$
S(0,3)=\{z \in \mathbb{C}| | z \mid=3\}
$$

once counterclockwise.
4. Find two series in terms of powers of variable z for function f defined by conditon

$$
z \mapsto \frac{1}{z\left(1+z^{2}\right)} .
$$

Where are these series valid?

