No study materials are allowed. Answers can be given in English or Finnish. Questions have equal points.

- 1. Tell if the following statements are true (T) or false (F). No minus points for wrong answers.
 - 1. Standard fibers are single-mode for wavelengths above $1.32 \mu m$.
 - 2. The numerical aperture characterizes the acceptance angle for light to be guided within the fiber core.
 - 3. Fiber losses are minimum at 1.3 μ m.
 - 4. Raman scattering amplifies signal shifted by 10 GHz from a strong pump field.
 - 5. Brillouin scattering causes distortion in low power systems.
 - 6. The Raman signal experience linear amplification.
 - 7. Self-phase modulation affects only the optical spectrum of signals.
 - 8. Four-wave mixing efficiency is independent of dispersion.
 - 9. Fabry-Pérot filters are passband filters.
 - 10. Increasing the reflectivity of the mirrors of a Fabry-Pérot cavity results in a higher Finesse.
 - 11. The transmission of Mach-Zehnder filters is a periodic function of frequency.
 - 12. The wavelength reflected by a Fiber Bragg grating is proportional to the grating period.
 - 13. The signal transmitted across a 2×2 coupler experiences a π phase-shift.
 - 14. The gain of EDFAs increases linearly with the signal input power.
 - 15. EDFAs can amplify several signals at different wavelengths simultaneously.
 - 16. Raman amplifiers provide gain over a narrow bandwidth.
 - 17. The chirp of external modulators affects the optical spectrum of externally modulated lasers.
 - 18. The responsivity of photodiodes is independent of the wavelength.
 - 19. Avalanche photodiodes can detect signals with lower power compared to PIN photodiodes.
 - 20. Optical Time Domain Reflectometry measures backscattering as a function of distance.
- 2. We want to design an optical fiber with a numerical aperture of 0.2, that supports 4 modes at the wavelength of 800 nm and whose inter-modal dispersion is 46 ns/km.
 - a) Calculate the core diameter of this fiber.
 - b) What is the cutoff wavelength of the fiber?
 - c) Calculate the refractive indices of the core n_1 and cladding n_2 .
- 3. We consider an optical fiber links to transmit data at a rate of 20 Mb/s. The link uses a transmitter at a wavelength of 1.55 μ m and a multi-mode fiber with attenuation is 0.25 dB/km, intermodal-dispersion of 0.03 ns/km, intra-modal dispersion of 17 ps/nm×km and a nonlinear coefficient of 2 /W/km. The transmitter has an output power P_{Out} =2 dBm and a spectral width $\Delta\lambda$ =2 nm. The receiver has a sensitivity of -30 dBm.

Calculate the maximum length of the link:

- à due to attenuation
- b) due to dispersion
- What is therefore the maximum possible length of the link?

The length of the link is chosen to be equal to this maximum.

- d) Calculate the maximum value of the nonlinear coefficient γ of the fiber that we can tolerate.
- e) Assuming that γ is equal to this maximum value, calculate the Brillouin scattering threshold. The nonlinear refractive index of the fiber is $n_{\rm NL}=3\times10^{-20}~{\rm m}^2/{\rm W}$ and the Brillouin gain is $g_{\rm B}=5\times10^{-11}~{\rm m/W}$.

Consider the following component consisting of two 50/50 couplers connected together with a delay line inserted in-between as shown below. The delay line consists of a fiber of length L and effective refractive index $n_{\rm eff} = 1.5$. The wavelength of the light propagating in the component is $\lambda = 1550 \text{ nm}.$

- a) Calculate P_{OUT}^{-1} and P_{OUT}^{-2} as a function of P_1 and P_2 . Calculate the length L of the fiber to obtain the following outputs:
- b) $P_{OUT}^1 = P_1$ and $P_{OUT}^2 = P_2$
- c) $P_{OUT}^1 = P_2$ and $P_{OUT}^2 = P_1$ d) $P_{OUT}^1 = P_{OUT}^2 = 1/2 \times (P_1 + P_2)$
- An ideal semiconductor photodiode produces one electron-hole pair for each photon of wavelength λ absorbed by the photodiode.
 - a) Derive an equation for the spectral responsivity of the ideal photodiode in terms of wavelength and fundamental constants. Include the effect of reflectance p of the photodiode surface with the term $(1-\rho)$ to the equation.
 - b) Explain briefly what is meant by a p-i-n photodiode. Show the structure of a well known p-i-nphotodiode.
 - c) Calculate the responsivity of a Germanium photodiode with an external quantum efficiency of 75% at the wavelength of 1480 nm.
- Draw a block diagram of a measurement setup for measuring the nonlinear coefficient of optical fibers using two laser wavelengths. Explain briefly the working principle and the method.