Examination

- Let X₁, X₂,... be independent and identically distributed random variables with cdf F such that $F(x) = 1 - e^{-x}$ for x > 0. Find out the limiting distribution of $(M_n - d_n)/c_n$, where $M_n =$ $\max(X_1, \dots, X_n)$, $c_n = 1$, and $d_n = \ln n$. (Hint: Recall that $\lim_{n \to \infty} (1 + s/n)^n = e^s$.)
- Let N₁, X₂,... be independent and identically distributed random variables with cumulative distribution function F, and denote the running maximum by $M_n = \max(X_1, \dots, X_n)$. What can you say about $\lim_{n\to\infty} M_n$? Does the limit exist?
- Let X₁,..., X_n be independent random variables distributed according to the standard generalized extreme value distribution H_{ξ} with $\xi > 0$.
 - (a) Show that M_n = max(X₁,..., X_n) follows a generalized extreme value distribution.
 - (b) Determine constants μ, σ, and α so that M_n has the same distribution as μ + σZ_α, where Z_α has the standard Fréchet distribution with shape α .
- 4. Table 1 represents n = 3 observations of annual maximum temperatures measured in an imaginary land called Extremistan.
 - (a) Compute the empirical cumulative distribution function F_n of the observed temperatures.
 - (b) Assume that the future annual maximum temperatures N₁, X₂,... are independent and identically distributed random variables with cdf F_n , and denote $L(u) = \min\{i \ge 1 : X_i > u\}$. Compute the probability P(L(u) = 3) for u = 50.
 - (c) Compute the return period E L(u) for u = 99

Table 1: Annual maximum temperatures in Extremistan during 2006–2008.

- (a) Explain why the standard Gumbel distribution is relevant in extreme values statistics.
 - (b) Give an example of a probability distribution that belongs to the maximal domain of attraction of a Gumbel distribution.
 - (c) Give an example of a probability distribution that does not belong to the maximal domain of attraction of a Gumbel distribution.

Formulas

Standard extreme value distribution functions:

Standard generalized Pareto distribution function:

•
$$\Psi_{\alpha}(x) = \exp(-(-x)^{\alpha}), x \leq 0.$$

$$G_{\xi}(x) = \begin{cases} 1 - (1 + \xi x)^{-1/\xi}, & x \ge 0, & \xi > 0, \\ 1 - e^{-x}, & x \ge 0, & \xi = 0, \\ 1 - (1 + \xi x)^{-1/\xi}, & 0 \le x \le -1/\xi, & \xi < 0. \end{cases}$$

Standard generalized extreme value distribution func-

$$H_{\xi}(x) = \begin{cases} \exp\left\{-\left(1+\xi x\right)^{-1/\xi}\right\}, & 1+\xi x > 0, \quad \xi \neq 0, \\ \exp\left\{-e^{-x}\right\}, & \xi = 0. \end{cases}$$