Mat-1.1631 Mathematics 3-I

Please fill in the required information into each paper sheet. Calculators are allowed.

1. (a) Evaluate
$$\left(\frac{1-i}{1+i}\right)^{8}$$
. (2p)

(b) Sketch the set
$$|z-i|=|z-1|$$
 in the complex plane. (2p)

(c) Find all zeros of the function
$$f(z) = \sin z$$
. (2p)

(b) Evaluate
$$\int_{|z-3|=4}^{4} \frac{15z+9}{z^3-9z} dz$$
, integration is counterclockwise. (5p)

3. (a) Does the function
$$y = \exp(x^2)$$
 have a Laplace transform? (1p)

(b) Solve the initial value problems by the Laplace transform:
$$y' - y = 1$$
, $y(0) = -1$. (5p)

(b) Does the Fourier sine series of the function
$$f(x) = \cos^2 x$$
 exist? (1p)

(c) Find the Fourier series of
$$f(x) = \cos^2 x$$
 on $[-\pi, \pi]$. (2p)

5. Find the Fourier sine transform of the function
$$f(x) = \begin{cases} x^2 & \text{if } 0 < x \le 1 \\ 0 & x > 1 \end{cases}$$
 (6p)

Appendix A. Fourier series

Any periodic (with period 2L) piecewise continuous in the interval $-L \le x \le L$ function f(x) can be represented by the Fourier series

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nx}{L} + b_n \sin \frac{\pi nx}{L} \right),$$
where
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx \qquad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{\pi nx}{L} dx \qquad , n=1,2...$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{\pi nx}{L} dx \qquad , n=1,2...$$