LIITE A

1 quicksort(array:Array,
2 left:integer, right:integer)
3
4 if |left-right| < 3
5 jdrjestd milld tahansa jdrjestdmismenetelmdlld
6 else
7 split = partition(array,left,right)
8
9 if (split-1l)-left > 0
10 quicksort(array, left, split-1)
11 if right-(split+l) > 0
12 quicksort(array, split+l, right)
13 '
14 endif
15 end
16
17 partition(array:Array, left:integer,
18 right:integer) : integer
19
20 leftCursor = left

21 $pivot-alkio on piilossa oikealla
22 rightCursor = right - 1

23 pivotValue = array[right]

24

25 do

26 while (array[leftCursor] < pivotvalue)-

27 leftCursor = leftCursor + 1

28

29 while (rightCursor >= 0 AND

30 array[rightCursor] >= pivotValue)

31 rightCursor = rightCursor - 1

32

33 if (leftCursor < rightCursor)

34 vaihda taulukon array elementit kesken#ddn kohdissa
35 leftCursor, rightCursor

36

37 while (leftCursor < rightCursor)

38

39 vaihda taulukon array elementit keskendd@n kohdissa
40 leftCursor, right

41

42 palaa (return) funktiosta paluuarvona:leftCursor

Helsinki University of Technology EXAMINATION
Department of Computer Science and Engineering 10.8.2009
T-106.1220/1223 Data Structures and Algorithms T/Y

Write on each paper your name, student number with the control letter, degree
programme, and the course code and name. Also write the date, hall, the number of
papers you return, and your signature.

1) Ten Questions (10 x 1p)

This is a compulsory part of the final exam. You need to get at least 5p out of the
maximum 10p so that the rest of the exam will be checked. However, this part alone is
not enough to pass the whole exam. On the other hand, in order to get 5p, you are not
required to give “the exactly correct answer”, but more or less show that you have
understood the functionality of the code fragments related to this part. Thus, pay
attention to the reasoning. Refer to the code line numbers if possible.

In Appendix A, you can see the Quicksort algorithm (it’s the same as in the
corresponding TRAKILA2 exercise) that sorts the given array in ascending order. Read
through all the questions below without answering them and after that familiarize
yourself with the code throughout. After this, answer all the questions and take time for
pondering and explaining your reasoning. Note, however, that all the questions refer to
the algorithm in Appendix A. In addition, the claims in the questions can be justified to
be either true or false, thus the argumentation is the only thing that matters for the
points!

a) Let N denote the input size of the algorithm when it is called with an unsorted
NrrNy. Define N in terms of the parameters Mt and M tt.

b) What does the algorithm do in lines 26-27? How about in lines 29-317

¢) The algorithm is called with an array [2, 1,9, 0, 5,2, 3]. What is the order of the
items after the line 7 is executed? Give also intermediate phases.

d) What does the algorithm do in lines 10 and 127

€) Argue whether it is true or false: the input and output for the algorithm is the one
and the same NrrNy.

f) Argue whether it is true or false: if the size of the array is strictly less than 3, it is
not worth to be sorted by this quicksort algorithm.

g) Argue whether it is true or false: this algorithm runs in ”NiNog/N” time.

h) Is this algorithm stable? Why?

i) Anayse the running time of the algorithm in case it is called with an array that is
initially in descending order.

j) Anayse the running time of the algorithm in case it is called with an array that
contains only equal keys.

Bonus exercise (do only if you still have time after the questions 2-4):

k) How many times the algorithm calls the subroutine NNrtrtron (if the size of the
input is N)? Order of magnitude with argumentation suffice for an answer. Give
the order of magnitude in Big O notation.

2) Terminology (2p + 2p + 2p + 2p)
Define the following concepts (4 x 1p). In addition, give an example of each (4 x 1p).

a) Abstract Data Type (ADT)
b) Priority queue

¢) Binary heap

d) Heap-order property

3) Binary Search Trees (1p + 1p + 3p + 3p)

a) Define the concept Binary Search Tree.

b) Draw an example of a complete binary search tree of height 4.

¢) What kind of binary search trees you know? How do they differ from each other?
Deal with at least three different data structures.

d) Compare the time complexities (best case, average case, and worst case) of the data
structures in (3c) according to the insert operation in terms of Big Oh Notation. Draw a
matrix in which you have the time complexities as columns and the data structures as
rOws.

4) Determining Minimun Spanning Tree (4p + 4p)

a) Explain an algorithm that computes the minimum spanning tree for a graph. Argue
what is the time complexity of this algorithm, if the graph has V vertices and E edges?

b) Lets consider the following undirected graph that has the vertices A-F and edges
AB(2), AD(2), AE(6), BC(4), BE(3), CE(1), CF(4), DE(1), EF(3). The weight of an
edge follows in the parenthesis. Show how the algorithm you just explained finds the
mininum spanning tree for the given graph.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

APPENDIX A

quicksort(array:Array,
left:integer, right:integer)

if |left-right| < 3
sort by any method
else
split = partition(array,left,right)

if (split-1)-left > 0
quicksort(array, left, split-1)

if right-(split+l) > 0
quicksort(array, split+l, right)

endif
end

partition(array:Array, left:integer,
right:integer) : integer

leftCursor = left

$Pivot is hidden in the right
rightCursor = right -~ 1
pivotvalue = array[right]

do
while (array[leftCursor] < pivotValue)
leftCursor = leftCursor + 1

while (rightCursor >= left AND
array[rightCursor] >= pivotValue)
rightCursor = rightCursor - 1
if (leftCursor < rightCursor)
swap array elements at
leftCursor, rightCursor

while (leftCursor < rightCursor)

swap array elements at
leftCursor, right

return from function with value:leftCursor

