Exam: Introduction to Geodesy 06.03.2010

(Function calculator)

1. Fundamentals

- (a) The flattening of the Earth. How does the internal distribution of the Earth's masses affect its flattening? Newton's and Huygens' ideas and modern understanding.
- (b) Describe the scientific controversy that the French Academy's grade measurement expeditions to Lapland and Peru attempted to settle, and how they did it.
- (c) What is a geodesic?

2. Statistics, units

(a) Given

$$\alpha = 57^{\circ}35'45''.$$

Compute α also in radians and gons.

(b) We have 52 playing cards, with values: the number value 2-10; ace is 1, jack is 11, queen is 12, king is 13. Compute the *expectancy* if a card is drawn blind from the pack. Equation:

$$E\left(\underline{n}\right) = \sum_{i=1}^{13} i \cdot p\left(i\right),$$

where p(i) is the probability that the card's value is *i*.

3. Measurement instruments and methods

- (a) The focusing of a measurement telecope. What is *parallax*?
- (b) Explain the self-levelling (automatic) level (drawing!).

4. First and second geodetic problems

- (a) Given a point A: $x_A = 6\,650\,000\,\text{m}$, $y_A = 480\,000\,\text{m}$. The distance to point B on $s = 2828.472\,\text{m}$ and the azimuth (direction angle) $t = 50\,\text{gon}$. Solve the first (forward) geodetic problem for points A, B.
- (b) Given is also point C with coordinates $x_C = 6\,649\,000\,\mathrm{m}$, $y_C = 479\,000\,\mathrm{m}$. Solve the second (inverse) geodetic problem for the points A, C.

5. Helmert transformation

(a) Given are points' A, B coordinates in the coordinate system (1):

$$x_A^{(1)} = 0 \,\mathrm{m}, \, y_A^{(1)} = 0 \,\mathrm{m}, x_B^{(1)} = 2000 \,\mathrm{m}, y_B^{(1)} = 1000 \,\mathrm{m};$$

and in the coordinate system (2):

$$x_A^{(2)} = 3500 \,\mathrm{m}; \, y_A^{(2)} = 1500 \,\mathrm{m}; \, x_B^{(2)} = 5500.02 \,\mathrm{m}; \, y_B^{(2)} = 2500.01 \,\mathrm{m}.$$

Assuming that the transformation between systems (1) and (2) is a Helmert transformation:

$$\begin{bmatrix} x^{(2)} \\ y^{(2)} \end{bmatrix} = K \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x^{(1)} \\ y^{(1)} \end{bmatrix} + \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

calculate its parameters K, θ , Δx and Δy .

(b) What is the inverse matrix of

$$K \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

? Is this matrix ever singular?

Points:

Question	1	2	3	4	5	Total
	a b c	a b	a b	a b	a b	
Points	5	5	5	5	5	25
	$2\ 2\ 1$	$2\ 3$	$2\ 3$	$2\ 3$	$2\ 3$	

Points	10	13	16	19	23
Grade	1	2	3	4	5