Exam: Introduction to Geodesy 22.10.2005

(Also qualifies as Fundamental Geodesy I)
 (Function calculator)

1. Fundamentals

(a) What is a clothoid, and why is it being used for building railroads and motorways?
(b) If in Peru the length of a degree of latitude is 110 km and in Lapland it is 112 km , calculate the radius of curvature of the Earth in both locations. Based on these numbers, is the Earth flattened or elongated?

2. Statistics, units

(a) Explain random, gross and systematic errors.
(b) Convert the angle $36^{\circ} 45^{\prime} 30^{\prime \prime}$ to gon and radians.

3. Measurement instruments and methods

(a) Explain how an automatic level works. Explanatory sketch.
(b) Describe the axes and circles in an optical theodolite and the angles that are measured with a theodolite.

4. First and second geodetic problems

(a) Given a point $A: x_{A}=6700000 \mathrm{~m}, y_{A}=500000 \mathrm{~m}$. The distance to point B is $s=2000 \mathrm{~m}$ and the azimuth (direction angle) $t=66.6666$ gon. Solve the first (forward) geodetic problem for points A, B.
(b) Given is also point C with coordinates $x_{C}=6698267.9492 \mathrm{~m}, y_{C}=499000 \mathrm{~m}$. Solve the second (inverse) geodetic problem for the points A, C

5. Helmert transformation

(a) Given the Helmert (similarity) transformation:

$$
\left[\begin{array}{l}
x^{(2)} \\
y^{(2)}
\end{array}\right]=(1+m)\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x^{(1)} \\
y^{(1)}
\end{array}\right]+\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]
$$

Explain (in words only) what all transformation parameters $m, \theta, \Delta x, \Delta y$ mean.
(b) Given are points' A, B coordinates in the coordinate system (1):

$$
x_{A}^{(1)}=0 \mathrm{~m}, y_{A}^{(1)}=0 \mathrm{~m}, x_{B}^{(1)}=1000 \mathrm{~m}, y_{B}^{(1)}=1000 \mathrm{~m} ;
$$

and in the coordinate system (2):

$$
x_{A}^{(2)}=3500 \mathrm{~m} ; y_{A}^{(2)}=1500 \mathrm{~m} ; x_{B}^{(2)}=4502 \mathrm{~m} ; y_{B}^{(2)}=2502 \mathrm{~m}
$$

Assuming that the transformation between systems (1) and (2) is a Helmert transformation:

$$
\left[\begin{array}{l}
x^{(2)} \\
y^{(2)}
\end{array}\right]=(1+m)\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x^{(1)} \\
y^{(1)}
\end{array}\right]+\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]
$$

calculate its parameters $m, \theta, \Delta x$ and Δy.

Points:

Question	1 ab b	2 ab b	3 ab b	4 ab	5 ab	Total.
Points	5	5	5	5	5	25
	23	32	23	23	23	

Points	10	13	16	19	23
Grade	1	2	3	4	5

