S-72.2505 Digital Transmission Methods

Exam 16.12.2009

This is a closed book exam

- 1. Compare the performance of two constellations. Errorless QAM constellation (plot a in figure 1) and QAM constellation with an IQ error (plot b in figure 1). All symbols are used equally often.
 - a) Compute symbol error probability for both constellations.
 - b) Compute bit error probability for Gray mapping shown in the figure.

a a

Express the performance in terms of $\frac{d}{\sigma}$

Figure 1. Signal constellation in quesiton 1. a) errorless constellation. b) costellation with IQ imbalance. In the figure d = 1, $d_1 = 0.8d$ $d_2 = 1.2d$.

2. The system is using 4 orthogonal basis functions for transmitting 1 bit of information (2 symbols). The vector representation of the symbols corresponding to the bits are

$$s_1 = [3A \ 2A \ 1A \ 0A]; \ s_2 = [0A \ 1A \ 2A \ 0A].$$

Where A is the scaling amplitude of the signal. The signal is transmitted over an AWGN channel with noise power spectral density N_0 .

- a) Express the equation that the optimal receiver is implementing.
- b) Draw the block diagram of the receiver that implements the equation of the optimal receiver. (Include also the matched filters to the basis functions).
- c) Express the BER performance as a function of $\frac{A}{N_0}$.
- 3. Calculate how many bit A/D is required if:
 - (a) The receiver noise floor is 75 dBm. (This noise power contains the noise due to thermal noise and front end noise).
 - (b) The noise added by A/D can not exceed 1 dB.
 - (c) The maximum received signal power is -55 dBm.
 - (d) For coping with the signal peak to average ratio and implementation losses the system reserves 15 dB margin.

1

- 4. Answer shortly to the following questions.
 - a) What is the pulse shaping?
 - b) Why do we need pulse shaping?

- c) Why the Sinc pulse is not good for pulse shaping?
- d) Why we use raised root cosine (RRC) pulse shaping?
- e) What tradeoff is being made if the RRC pulse is used?
- 5. Assume a discrete channel model $h = \begin{bmatrix} 1 & 0.5 & 0.2 \end{bmatrix}$
 - a) Express the received signal model after this channel and with additive white Gaussian noise.
 - b) Write out separately the parts of the model that represents the useful symbol and the part that represents the inter-symbol interference.
 - c) How would the transmitted signal power spectrum look like? How would the signal power spectrum look like after the channel? Illustrate the spectrum by drawing examples.
 - d) How would the spectrum look like after linear zero forcing (ZF) equalizer?
 - e) Why is the minimum mean square error (MMSE) preferable to the ZF equalizer?