S-87.2113 Basic electronics Exam 27.09.2009 / Marko Kosunen

Write your name and your student number on every paper (also on possible appendices). All calculators allowed. NO literature allowed.

- 1. a) Derive an expression for the voltage gain vo/vin of the operational amplifier circuit in Fig. 1.
- b) Design the circuit so that its voltage gain is 26dB and its input impedance is $10k\Omega$.
- c) The operational amplifier has an input offset voltage $V_{OF}=10mV$. Calculate the error voltage at the amplifier output.
- d) The amplifier is changed so that a capacitor C is connected in series with R_1 . How large are the error voltages due to offset voltage and bias current now?

Hint: the sign of V_{OF} is not important.

Figure 1:

- 2 a) Desing the circuit of the figure 2 so that the voltage gain is 10 and the current through the feedback resistor is at most 1mA when the output voltage is 1V. Assume that the operational amplifier is ideal.
- b) If the gain of the operational amplifier is not infinite but 80dB, how large is the error due to finite gain in the circuit of a)-part? How large is the error if the overall gain of the circuit should be 200.

Figure 2:

- 3. The component values in the amplifier of Fig.3 are as follows: $R_1 = 6k\Omega$, $R_2 = 1k\Omega$, $R_3 = 10k\Omega$, $k_n'\frac{W}{L} = 4mA/V^2$, $V_t = 1V$ and $V_{DD} = 10V$, $i_d = k_n'\frac{W}{2L}(v_{GS} V_T)^2(1 + \lambda v_{DS})$. You can neglect the channel length modulation of the MOS transistor. Further, the capacitors are big with respect to the frequency of interest.
- a) Find the operating point of the transistor.
- b) Draw the small signal equivalent circuit of the amplifier.
- c) Determine the open circuit voltage gain A_{vo} and the input and output impedances R_{in} and R_{o} .
- d) How much R_1 and R_2 lower the output voltage when the internal source impedance is $1k\Omega$?

Figure 3:

- 4. a) Draw the output voltage of the circuit in Fig. 4 in continuous state (not the start-up transient), when the input voltage is $v_i(t) = 1 + 3 \cdot sin(2\pi 1kHz \cdot t)V$ V and the load resistor RL is infinite. Assume that the diode is ideal (no resistance, no forward voltage drop).
- b) Draw the output voltage in continuous state when $v_i(t) = 1 + 3 \cdot \sin(2\pi 1kHz \cdot t)V$, $R_L = 100k\Omega$, $C_1 = 1\mu F$ and the forward diode voltage is $V_D = 0.7V$. Take the droop at the output into account. (Still neglect the diode's dynamic resistance).

Figure 4: