S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen

Exam 22.12.2008: Problems 1,3,4,7,9

1. Mid-Term: Problems 1,2,3,4,5 2. Mid-Term: Problems 6,7,8,9,10

You may choose not more than four problems/exam or mid-term, but you are allowed to include each answer both in the mid-terms and the exam (you may take the exam and mid-term simultaneously)! The highest point combination will set your course mark.

1. Find current I. $R_1 = 2 \Omega$, $R_2 = 4 \Omega$, E = 10 V, $J_1 = 2 \text{ A}$, $J_2 = 3 \text{ A}$

2. The switch is closed at t=0. How long does it take for $u_2(t)$ to reach 90 % of its maximum? $R_1=3~\Omega,\,R_2=6~\Omega,\,C=0.22~\mathrm{F},\,U_{\mathrm{C0}}=0~\mathrm{V}.$

3. Find current I.~E=6 $\!\!$ $\!\!$ O $\!\!$ V, $R_1=4~\Omega,\,R_2=2~\Omega,\,L=0.2$ H, C=50 mF, $\omega=10^{-1}$ s.

4. The average power flowing from left to right through plane A-B equals P=80 W. Find the complex power $S_{\rm E}$ taken from the voltage source. $R_1=10~\Omega,\,R_2=20~\Omega,\,L=5~{\rm H},\,\omega=4~{1\over 4}$.

5. Find current $I_{\rm S}$ of a sinusoidal signal source if the load current equals $I_2=1\angle 0^\circ$ A. Use the transmission line equations. $R_1=10~\Omega,~R_2=20~\Omega,~Z_{\rm C}=60~\Omega.$

Answer only four problems. Solutions can be found in Noppa. Next exam on Jan. 14th. Turn

6. Find output voltage U of the operational amplifier. $R_1=10~{\rm k}\Omega,~R_2=20~{\rm k}\Omega,~R_3=10~{\rm k}\Omega,~R_4=100~{\rm k}\Omega,~E=1~{\rm V}.$

7. Find E, corresponding I=1,20 mA? $R_1=240~\Omega,\,R_2=42~\Omega,\,I_{\rm S}=1$ nA, $nU_T=50$ mV.

8. Find voltage $U_{\rm CE}$. $E_1=5.1$ V, $R_1=22$ k Ω , $R_2=0.2$ k Ω , $E_2=8$ V, $U_{\rm BE}=0.7$ V, $\beta=100$.

9. Find the small-signal output voltage $u_{\rm o}$ if $e_{\rm s}=1$ V? R_1 and R_2 can be considered so large that they can be neglected. $g_{\rm m}=1$ mS, R=10 k Ω .

10. The secondary voltage of a mains transformer ($f=50~{\rm Hz}$) equals $U_2=10~{\rm V}$, $U_{\rm OUT}=8~{\rm V}$, and $C=4700~\mu{\rm F}$. Find ripple voltage $u_{\rm C}$ approximately, assuming $R=20~\Omega$ and $I_{\rm Q}=0$?

Answer only four problems!