Aalto University

Department of Information and Computer Science

Petteri Kaski (tel. 23260)

T-79.5205 Combinatorics (5 cr) Exam Fri 20 May 2011, 9–12 a.m.

Write down on each answer sheet:

- Your name, degree programme, and student number
- The text: "T-79.5205 Combinatorics 20.5.2011"
- The total number of answer sheets you are submitting for grading

Note: You can write down your answers in either Finnish, Swedish, or English.

- 1. An *involution* of $[n] = \{1, 2, ..., n\}$ is a permutation σ of [n] that is its own inverse, that is, $\sigma^{-1} = \sigma$.
 - (a) List all involutions of [n] for n = 2, 3, 4.
 - (b) Denote by I(n) the number of involutions of [n]. Determine I(n) for n = 5, 6, 7. Hint: Consider the decomposition of σ into cycles. You may want to derive a recurrence relation or a direct counting formula. Make sure your formula agrees with the lists in part (a)!
- 2. The principle of inclusion and exclusion.
 - (a) Give a careful description of the principle of inclusion and exclusion.
 - (b) How many positive integers at most 1000 are not divisible by any of the integers 2, 3, 4, 5, 6?
- 3. Partially ordered sets.
 - (a) Show that the set of positive integer divisors of the integer n is partially ordered by the integer divisibility relation "|", where a|b holds for integers a and b if and only if there exists an integer q such that qa = b.
 - (b) Draw a Hasse diagram of the positive integer divisors of n = 60. Find a largest antichain and a partition of the divisors into the minimum possible number of chains.
- 4. Combinatorial and probabilistic proof techniques.
 - (a) For $n \ge 1$, let $A_1, A_2, ..., A_k \subseteq [n]$ be distinct sets with $A_i \cap A_j \ne \emptyset$ for all $1 \le i < j \le k$. Prove that $k \le 2^{n-1}$ and that equality can hold. *Hint:* Start with an explicit construction for equality.
 - (b) Let n and s be nonnegative integers such that $n \ge 3$ and $2s \log 2 > 3 \log n$. Prove that there exist sets $A_1, A_2, \ldots, A_s \subseteq [n]$ such that for every $B \in {[n] \choose 3}$ there exists a $1 \le j \le s$ with both $A_j \cap B \ne \emptyset$ and $A_j \cap B \ne B$.

Hint: Use a nonconstructive technique.

Grading: Each problem 12p, total 48p.