T-79.4501 Cryptography and Data Security (5 cr) T-110.5210 Cryptosystems (5 cr)

EXAM

Thursday, March 10, 2011

Students of the course **T-110.5210 Cryptosystems (4 cr)** give answers to at most four (4) problems. Clearly mark that your exam is for 4 credits only.

1. (6 pts) The key of Hill cipher is a 3×3 matrix

$$K = \left(\begin{array}{ccc} k_1 & k_2 & k_3 \\ k_4 & k_5 & k_6 \\ k_7 & k_8 & k_9 \end{array}\right),$$

where the unknown $k_i \in \{0, 1, ..., 25\} = \{A, B, ..., Y, Z\}$ can be solved given a sufficient number (at least three are needed) known plaintext-ciphertext pairs. It is given that $E_K(sky) = BAA$, $E_K(sun) = ABA$, $E_K(hat) = AAB$. Find the decryption matrix, that is, the inverse K^{-1} of the key matrix K.

- 2. Describe by drawing a picture, or using formulas, or both
 - (a) (2 pts) the encryption function of the CBC mode of operation;
 - (b) (2 pts) the decryption function of the CBC mode of operation; and
 - (c) (2 pts) the CBC MAC.
- 3. (6 pts) In the round key expansion procedure, AES uses 8-bit constants C_i , i = 1, 2, 3, ..., 30 that can be computed as

$$C_i = 2^{i-1}$$

in polynomial arithmetic modulo $m(x) = x^8 + x^4 + x^3 + x + 1$, that is, in Galois field $GF(2^8)$ with polynomial m(x). Compute C_{11} , C_{12} and C_{22} .

- 4. (6 pts) Alice is using the RSA cryptosystem with modulus $N=1003=17\cdot 59$ and public exponent e, which is an odd integer. The plaintext is x=237. Show that then the ciphertext is y=237.
- 5. (6 pts) There are several variations to the DSS signature scheme. In the Nyberg-Rueppel variation the signature (r, s) is computed as

$$r = (H \cdot (g^k \mod p)) \mod q$$

 $s = (k - a \cdot r) \mod q$.

When generating the signature, the signer checks that $(g^k \mod p) \mod q \neq 0$. The private key is $a \in \mathbb{Z}_q$ and the public key is $V = g^a \mod p$.

Show how the hash code H, 0 < H < q, can be recovered from the signature (r, s) using public information only. (Hint: Recover the exponential $g^k \mod p$ first.)

Exam Calculator Policy. It is allowed to use a function calculator, however no programmable calculator.