1. (10p)

- a) Explain what is a classical tautology in modal logic. Is the formula $\Box \Box P \rightarrow ((\Box \Box P \rightarrow \neg \Box P) \rightarrow \Box \Box P)$ a classical tautology? Justify your claim.
- b) Define what it means that a frame logic L has the finite model property.
- 2. (10p) Determine using the tableau method whether the following claims hold. Give a counter-model based on the tableau when appropriate (P and Q are atomic propositions).
 - a) {} $\models_{\mathbf{K4}} \{\neg \Diamond P\} \Longrightarrow \Box(\Box P \lor \neg \Diamond P)$, where **K4** is the class of transitive frames.
 - b) There is a model based on a symmetric frame and a possible world in the model where all the formulas $\Diamond Q$ and $\Diamond (P \land \neg \Box Q)$ and $\Box \Diamond \Box \Diamond P$ are false.

3. (10p)

- a) Give a modal formula which is D-valid but not K-valid and give a model showing that this formula is not K-valid where D is the class of serial frames and K is the class of all frames.
- b) Consider a Hilbert-style proof system whose axioms are all classical tautologies and all formulas of the form $\Box(P \to Q) \to (\Box P \to \Box Q)$ and $\Box P \to \Box \neg \Box P$ and whose inference rules are the Modus Ponens and the necessitation rule.

Define what it means that a Hilbert-style proof system is sound and complete for a given modal logic L and show that the proof system above is not sound for the modal logic **S4** where **S4** is the collection of reflexive and transitive frames.

4. (10p)

- a) Give the definitions of the following concepts in ALC in terms of the concept names Bolt, Nut, Part and role name includes:
 - (i) A Crisp Part (a Part that is not a Bolt and not a Nut)
 - (ii) A Complex Part (a Part that includes a Part).
- b) (i) Define what it means that a concept is subsumed by another with respect to a knowledge base in ALC.

(ii) Consider the knowledge base $(\mathcal{T}, \mathcal{A})$ where

 $\mathcal{T} = \{ (B \sqcup \exists r.C) \sqsubseteq A \},\$

 $\mathcal{A} = \{ a : (A \sqcup C) \},\$

A, B, C are concept names, r is a role name, and a is an individual name.

Study using the tableau algorithm for \mathcal{ALC} whether $\exists r.A$ is subsumed by $\exists r.\neg C$ with respect to $(\mathcal{T}, \mathcal{A})$ and give a counter model when appropriate.