1. (10p)
a) Explain what is a classical tautology in modal logic. Is the formula $\square \square P \rightarrow((\square \square P \rightarrow$ $\neg \square P) \rightarrow \square \square P)$ a classical tautology? Justify your claim.
b) Define what it means that a frame logic \mathbf{L} has the finite model property.
2. (10p) Determine using the tableau method whether the following claims hold. Give a counter-model based on the tableau when appropriate (P and Q are atomic propositions).
a) $\left\} \models_{\mathrm{K} 4}\{\neg \diamond P\} \Longrightarrow \square(\square P \vee \neg \diamond P)\right.$, where K 4 is the class of transitive frames.
b) There is a model based on a symmetric frame and a possible world in the model where all the formulas $\diamond Q$ and $\diamond(P \wedge \neg \square Q)$ and $\square \diamond \square \diamond P$ are false.
3. (10p)
a) Give a modal formula which is \mathbf{D}-valid but not \mathbf{K}-valid and give a model showing that this formula is not \mathbf{K}-valid where \mathbf{D} is the class of serial frames and \mathbf{K} is the class of all frames.
b) Consider a Hilbert-style proof system whose axioms are all classical tautologies and all formulas of the form $\square(P \rightarrow Q) \rightarrow(\square P \rightarrow \square Q)$ and $\square P \rightarrow \square \neg \square P$ and whose inference rules are the Modus Ponens and the necessitation rule.
Define what it means that a Hilbert-style proof system is sound and complete for a given modal logic L and show that the proof system above is not sound for the modal logic $\mathbf{S} 4$ where $\mathbf{S} 4$ is the collection of reflexive and transitive frames.
4. (10p)
a) Give the definitions of the following concepts in $\mathcal{A L C}$ in terms of the concept names Bolt, Nut, Part and role name includes:
(i) A Crisp Part (a Part that is not a Bolt and not a Nut)
(ii) A Complex Part (a Part that includes a Part).
b) (i) Define what it means that a concept is subsumed by another with respect to a knowledge base in $\mathcal{A} \mathcal{L C}$.
(ii) Consider the knowledge base $(\mathcal{T}, \mathcal{A})$ where
$\mathcal{T}=\{(B \sqcup \exists r . C) \sqsubseteq A\}$,
$\mathcal{A}=\{a:(A \sqcup C)\}$,
A, B, C are concept names, r is a role name, and a is an individual name.
Study using the tableau algorithm for $\mathcal{A L C}$ whether $\exists r . A$ is subsumed by $\exists r . \neg C$ with respect to $(\mathcal{T}, \mathcal{A})$ and give a counter model when appropriate.

Properties of relation R :
Reflexive: $\quad \forall s(s R s)$
Symmetric: $\forall s \forall t(s R t \rightarrow t R s)$
Serial: $\quad \forall s \exists t(s R t)$
Transitive: $\quad \forall s \forall t \forall u(s R t \wedge t R u \rightarrow s R u)$

