Department of Communications and Networking

1. Consider a single-server queue. The system is empty at time 0 . New customers arrive at times 1,3 , and 4 . Their service times are 6,3 , and 2 , respectively. For each of the three service disciplines given below, determine the departure times of all three customers:
(a) FIFO,
(b) LIFO-PR,
(c) FB.
2. Consider a renewal sequence $\left(T_{n}\right)$, where each T_{n} is uniformly distributed in the interval $(0,1)$, $T_{n} \sim \mathrm{U}(0,1)$. Let $T^{s}(t)$ denote the corresponding selected lifetime process. Utilizing the theory of regenerative processes, determine the mean $E\left[T^{s}\right]$ and the variance $D^{2}\left[T^{s}\right]$ of the steady-state selected lifetime distribution.
3. Consider an $M / G / 1$ queue with two customer classes and deterministic service times for each class. New class- k customers arrive according to Poisson process with rate λ_{k} and their service times are equal to s_{k}. The service discipline is FIFO.
(a) Are there any stability conditions? If so, specify them.
(b) What is the mean steady-state waiting time when $\lambda_{1}=\lambda_{2}=1 / 10$ (customers per time unit), $s_{1}=3$, and $s_{2}=4$ (time units)?
(c) What is the mean steady-state queue length when $\lambda_{1}=\lambda_{2}=1 / 10$ (customers per time unit), $s_{1}=3$, and $s_{2}=4$ (time units)?
4. Consider an $M / G / 1$ queue with $\rho<1$. The service discipline is the non-preemptive priority discipline with two customer classes. One of the customer classes has priority 1 , and the other priority 2 , where priority 1 refers to the higher priority. Prove that the steady-state mean waiting time $\mathrm{E}[\mathrm{W}]$ is minimized when priority 1 is given to the user class with a smaller mean service time. You may utilize the fact that the steady-state mean waiting time for the two priority classes is given by

$$
E\left[W_{1}\right]=\frac{E[R]}{1-\rho_{1}}, \quad E\left[W_{2}\right]=\frac{E[R]}{\left(1-\rho_{1}\right)\left(1-\rho_{1}-\rho_{2}\right)}
$$

5. Consider a single-server queue that is operated using the Gittins index (GI) discipline. The Gittins index $G(a)$ is assumed to have the following properties:

- $G(a)=2+a$ for $a \in[0,2)$.
- $G(a)=8 / a$ for $a \in[2, \infty)$.

The system is empty at time 0 . New customers arrive at times 1,2 , and 3 . Their service times are 3,6 , and 5 , respectively. Determine the departure times of all three customers.

