School of Science and Technology
Department of Communications and Networking
S-38.1146 Introduction to Performance Analysis, Spring 2010

Answers briefly:

1. (a) Lecture 2/23: $T \sim \operatorname{Exp}(1 / 10)$. [3 points]
(b) Lecture 2/24: $X \sim \operatorname{Poisson}(1 / 2)$. [3 points]
2. (a) Birth-death process with state space $\{0,1,2,3\}$ and state transition rates

$$
q_{01}=q_{12}=q_{23}=\lambda, \quad q_{10}=\mu, \quad q_{21}=q_{32}=2 \mu . \quad[2 \text { points }]
$$

(b) We get the equilibrium distribution by applying the local balance equations together with the normalizing condition:

$$
\begin{aligned}
& \pi_{0}=\left(1+\frac{\lambda}{\mu}+\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}\right)^{-1} \\
& \pi_{1}=\pi_{0} \frac{\lambda}{\mu}, \pi_{2}=\pi_{0} \frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}, \pi_{3}=\pi_{0} \frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3} .[3 \text { points }]
\end{aligned}
$$

(c) Due to the PASTA property,

$$
P\{\text { "loss" }\}=\pi_{3}=1 / 11 \approx 0.09 \quad[1 \text { point }]
$$

3. Application of Little's formula/law/result (L5/67).
(a) $E\left[X_{\mathrm{w}}\right]=\lambda\left(1-p_{\text {loss }}\right) E[W]=\frac{1}{6} \cdot \frac{9}{10} \cdot 2=3 / 10=0.3$. [3 points]
(b) $E\left[X_{\mathrm{s}}\right]=\lambda\left(1-p_{\text {loss }}\right) E[S]=\frac{1}{6} \cdot \frac{9}{10} \cdot 8=6 / 5=1.2$. [3 points]
4. (a) Reliability block diagram is two blocks in series (L9/37). $\phi(\mathbf{x})=x_{1} x_{2}$ (L9/38). [2 points]
(b) In total 4 states, probabilities can be calculated using 22 -state models and using independence or directly from a 4 -state model.
$A=P\{$ "both endpoints are up" $\}=\pi_{3}=\frac{\mu_{1}}{\lambda_{1}+\mu_{1}} \cdot \frac{\mu_{2}}{\lambda_{2}+\mu_{2}}=\frac{\mu_{1} \mu_{2}}{\lambda_{1} \lambda_{2}+\lambda_{1} \mu_{2}+\lambda_{2} \mu_{1}+\mu_{1} \mu_{2}}$ [4 points]
5. (a) $X=\frac{1}{\lambda} \log U$. Some steps how to achieve this was required. [3 points]
(b) Start at time 0 , counter 0 , use (a) to calculate time of next arrival, increment counter and time until time $>T$. [3 points]
