
AALTO UNIVERSITY
CSE Department
Timo Lilja

Exam
T-106.4155

28.10.2011
Page 1/7

T-106.4155 Operating systems

0 (1p) Fill in the feedback form available in the Course Noppa News page.



AALTO UNIVERSITY
CSE Department
Timo Lilja

Exam
T-106.4155

28.10.2011
Page 2/7

1 (10p) Give short definitions for the following. (One point per question.)

a) What is double buffering?

(Stallings pp. 506) In double buffering, a process transfers data to
(or from) one buffer while the operating system empties (or fills) the
other.

b) What are continous and chained file allocation methods?

(Stallings pp. 572–573) In contiguous allocation a single contigous set
of blocks is allocated to a file at the fime of file creation. In chained
allocation, each block has a pointer to the next block in the chain.

c) What is a process?

(Stallings pp. 790) A program in execution. A process is controlled
by the operating system. Same as task

d) What is an interrupt?

(Stallings pp. 788) A suspension of a process, such as the execution
of a computer program, cased by an event external to that process
and performed in such a way that the process can be resumed.

e) What is an asynchronous operation?

(Stalllings pp. 785) An operation that occurs without a regular or
predictable time relationship to a specified event.

f) What is DMA?

(Stallings pp. 786) A form of I/O in which a special module, called
DMA module, controls the exchange of data between main memory
and I/O device. The processor sends a request for the transfer of a
block of data to the DMA module and is interrupted only after the
entire block has been transferred.

g) What is MMU?

Memory Management Unit translates virtual addresses into physical
addresses, handles memory protection and cache control.

h) What is priority inversion?

(Stallings pp. 790) A circumstance in which the operating system
forces a higehr priority task to wait for a lower-priority task.

i) What is external fragmentation?



AALTO UNIVERSITY
CSE Department
Timo Lilja

Exam
T-106.4155

28.10.2011
Page 3/7

(Stallings pp. 787) Occurs when memory is divided into variable-size
partitions corresponding to the blocks of data assigned to the main
memory (e.g. segemnts in main memory). As segments are moved
into and out of the memory, gaps will occur between the occupied
portions of memory.

j) What is a privileged instruction?

(Stallings pp. 790) An instruction that can be executed only in a
specified mode, usually by a supervisory program.

Note that long explanations (several sentences) are not allowed.

2 (6p) Consider the producer-consumer problem: one process reading from and
one process writing into an N element shared buffer. Give a solution that
implements mutual exclusion by using a monitor.

You can use either Hoare or Lampson–Redell monitors but indicate which
one you are using. Present your solution as a piece of pseudo code and
give a short explanation. Provide only the monitor definition, i.e. ap-

pend(), take() methods and other internal definitions for the monitor.

Stallings pp. 227-229

Hoare’s monitor:

monitor producerconsumer

char buffer [N];

int nextin, nextout;

int count;

void append(char x)

{

if (count == N) cwait(notfull);

buffer[nextin] = x;

nextin = (nextin + 1) % N;

count++;

csignal(notempty);

}

void take(char x)

{

if (count == 0) cwait(notempty);

x = buffer[nextout];

nexout = (nextout + 1) % N;

count--;



AALTO UNIVERSITY
CSE Department
Timo Lilja

Exam
T-106.4155

28.10.2011
Page 4/7

csignal(notfull);

}

{ nextin = 0 ; nextout = 0; count = 0; }

Lampson–Redell monitor:

monitor producerconsumer

char buffer [N];

int nextin, nextout;

int count;

void append(char x)

{

while (count == N) cwait(notfull);

buffer[nextin] = x;

nextin = (nextin + 1) % N;

count++;

cnotify(notempty);

}

void take(char x)

{

while (count == 0) cwait(notempty);

x = buffer[nextout];

nexout = (nextout + 1) % N;

count--;

cnotify(notfull);

}

{ nextin = 0 ; nextout = 0; count = 0; }

Main program

void producer()

{

char x;

while (true) {

produce(x);

append(x);

}

}

void consumer()

{

char x;



AALTO UNIVERSITY
CSE Department
Timo Lilja

Exam
T-106.4155

28.10.2011
Page 5/7

while (true) {

take(x);

consume(x);

}

}

void main()

{

parbegin(producer, consumer);

}

Grading (max 6p)

• solution doesn’t deal with the producer-consumer problem => 0p

• correct solution => 4p

• explaining Hoare vs. Lampson-Redell => 1p

• explanation of the code => 1p

Mistakes

• solution is not monitor => 0p

• acquire but no signaling => 4p

• acquire but no waiting => 2p

3 (4p) How is the address translation from virtual addresses to physical ad-
dresses done in a modern operating system? What kind of hardware is
available to support such translations in modern systems?

Grading (max 4p)

• Overall picture of the page/frame structure (1p)

• MSB of the address is translated with the page table (1p)

• Detailed description of the page table (2-/3-level, IPT) (1p)

• TLB and MMU hardware (1p)



AALTO UNIVERSITY
CSE Department
Timo Lilja

Exam
T-106.4155

28.10.2011
Page 6/7

4 (4p) Assume that we have a disk with 200 tracks and a disk scheduler receiving
track requests 55,58,39,18,90,160,150,38,184 in that order. Give a list of
tracks accessed in the access time order and the average seek time of
the sequence when scheduling policy is a) First-in-First-Out (FIFO) b)
Shortest-Service-Time-First (SSTF) c) SCAN d) C-SCAN.

Assume that the disk head is initially located at track 100.

From Stallings pp. 512

REQUESTS 55,58,39,18,90,160,150,38,184 SUM AVG

------------------------------------------------

FIFO 55,58,39,18,90,160,150,38,184 497 55.3

SSTF 90,58,55,39,38,18,150,160,184 248 27.5

SCAN 150,160,184,90,58,55,39,38,18 250 27.8

C-SCAN 150,160,184,18,38,39,55,58,90 322 35.8

SCAN and C-SCAN to decreasing track numbers:

SCAN 90,58,55,39,38,18,150,160,184 248 27.5 (same as SSTF)

C-SCAN 90,58,55,39,38,18,184,160,150 282 31.3

Grading

• 1p for each algorithm (0,5p access, 0,5p average or sum)

• for SCAN and C-SCAN the student can decided whether the head
is initally moving towards increasing or decreasing track number.
(In the above, it is moving towards increasing track number.)

• the question asks for average seek time even though it is hard to
calculate with the facts presented.

– giving average seek length or some parameterized seek time
given the seek length is ok

5 (6p) Write an one-page essay on kernel and user space threads.

(Stallings pp. 168–173)

• User-Level Threads (ULT)

– all threads are executed in a single OS process; OS is totally
unaware of user-level threads

– thread implementation is usually in a userland library that con-
tains necessary code for creating and mainting threads, doing
the scheduling

• Kernel-Level Threads (KLT)



AALTO UNIVERSITY
CSE Department
Timo Lilja

Exam
T-106.4155

28.10.2011
Page 7/7

– a process contains multiple kernel-level threads that are sched-
uled by the OS kernel

– kernel level threads share the same address space but have their
own execution stacks in the process control block

• ULT vs. KLT

– ULT context switch is faster; no need to jump to kernel and
invoke its scheduling routines

– In ULT, it is easy to do application specific scheduling

– ULTs can be run on any OS provided that sufficient function-
ality in the OS (e.g. getcontext() and setcontext(2)) is
available

– In ULT, if a thread invokes a blocking system call, the whole
process is stopped until the call returns; KLT’s only the thread
executing blocking call is blocked. (This can be worked around
by either having separate processes or jacketing, i.e. convert-
ing blocking system calls into non-blocking by first checking
whether the I/O call would block before actually performing
it.)

– In KLT, threads can be executed truly in parallel, e.g. in SMP
setup. in ULT all threads are confined into single process exe-
cuted in a single CPU by the OS kernel.

• Combined Approaches

– we can combine both ULTs and KLTs; single process can con-
tain multiple parallely executable KLTs that each have multiple
ULTs

– we get all the parallelism provided by the hardware

– system calls don’t block the entire execution

– Programmer can choose the number of ULTs and KLTs accord-
ingly

Grading

• Explaining ULT => 1p

• Explaining KLT => 1p

• Combined approaches => 1p

• ULT vs. KLT Comparison => 3p


