T-61.5130 Machine Learning and Neural Networks Examination 24th October 2011/Karhunen

- 1. Answer briefly (using a few lines) to the following questions or items:
 - (a) Define the basic logistic sigmoidal function. Draw a figure describing coarsely its overall behavior.
 - (b) What is the main deficiency of simple perceptron?
 - (c) Explain what is so-called bias-variance dilemma.
 - (d) Name the methods that you know for selecting the centers of radial-basis function networks.
 - (e) What are the two major phases in the SOM (self-organizing map) learning algorithm?
 - (f) Draw the schematic diagram of focused neuronal filter.
- 2. Explain what are the main properties of neural networks distinguishing them from other standard types of computing. Discuss the main benefits (and drawback) of neural networks and computing.
- 3. Consider the general linear model for modeling a scalar variable

$$y: y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x})$$

where \mathbf{x} is data vector, \mathbf{w} is M-dimensional weight vector with elements $w_0, w_1, ..., w_{M-1}$, and the $\phi_j(\mathbf{x})$, j=1,...,M-1 are some basis functions which can be nonlinear. Often $\phi_0(\mathbf{x})=1$ is the dummy 'basis function' corresponding to the bias term w_0 . You have at your disposal N input-output training pairs (t_i, \mathbf{x}_i) . Model the dependence between input vector \mathbf{x} and scalar output t using the general linear model above. Fit the model to the training data using the least-squares method with the added weight decay regularizer $0.5\lambda\mathbf{w}^T\mathbf{w}$.

4. Consider the neural network having the structure shown in the figure on the reverse side. Construct a mathematical expression for the output signal y_j of neuron j in the network. You can use a suitable notation for the input signals and weights of the network. For simplicity, we assume that there are no bias terms. The activation function $\varphi(v)$ is a sigmoidal type nonlinear function.

A SCHEMATIC DIAGRAM OF THE NEURAL NETWORK,

 \bigcirc