Aalto University

Department of Information and Computer Science

Petteri Kaski (tel. 23260)

T-79.5205 Combinatorics (5 cr)

Exam Mon 9 Jan 2012, 9-12 a.m.

Write down on each answer sheet:

- Your name, degree programme, and student number
- The text: "T-79.5205 Combinatorics 9.1.2012"
- The total number of answer sheets you are submitting for grading

Note: You can write down your answers in either Finnish, Swedish, or English.

- 1. Give a closed-form solution or a counting recurrence as a function of n and k.
 - (a) Determine the number of binary strings of length n that do not contain a substring of the form "11". For example, for n = 6 the binary string 100101 is such a string, whereas 101100 is not. Compute the values for $1 \le n \le 10$.
 - (b) As in part (a), but with the additional constraint that the number of "1"s in the string is exactly k. Compute the value for n = 6 and 0 < k < 6.

Hint: Start by listing the strings for small values of n.

- 2. Möbius inversion in partially ordered sets.
 - (a) What is meant by Möbius inversion?
 - (b) The set of all subsets of the set $[n] = \{1, 2, ..., n\}$ is partially ordered by the subset inclusion relation " \subseteq ". Show that the Möbius function of this poset is given for all $A, B \subseteq [n]$ by

$$\mu(A,B) = \begin{cases} (-1)^{|B\setminus A|} & \text{if } A \subseteq B; \\ 0 & \text{otherwise.} \end{cases}$$

Hint: Recall that every nonempty set has equally many even and odd subsets.

- 3. Symmetry and group actions.
 - (a) Let us study the 6-cycle C_6 below. Determine the elements of the automorphism group $\operatorname{Aut}(C_6) \leq S_6$.

(b) Draw the orbits of Aut (C_6) on $\binom{[6]}{2}$.

¹We write $\binom{[n]}{k}$ for the set of all *k*-subsets of $[n] = \{1, 2, ..., n\}$. A permutation σ of [n] acts on $S \subseteq [n]$ by $\sigma(S) = \{\sigma(x) : x \in S\}$.

(c) For each orbit of $\operatorname{Aut}(C_6)$ on $\binom{[6]}{2}$, determine the stabilizer subgroup of the lexicographically least element of the orbit.

4. Extremal set theory.

- (a) State the Erdős-Ko-Rado Theorem.
- (b) The upper bound $\binom{n-1}{k-1}$ given by the Erdős-Ko-Rado Theorem is achieved by the families of sets containing a fixed element. Show that for n=2k there are other families achieving this bound.

Hint: For each set, take the set itself or its complement.

(c) Let $n \le 2k$ and let $A_1, A_2, \dots, A_m \subseteq [n]$ be distinct sets with $|A_i| = k$ and $A_i \cup A_j \ne [n]$ for all $1 \le i < j \le m$. Prove that $m \le (1 - k/n) \binom{n}{k}$ and that equality can hold.

Grading: Each problem 12p, total 48p.