T-106.5221 Transaction Management in Databases
Exam, August 26th, 2011

Allowed materials: writing implements, calculator (not necessary).
Write the following clearly on top of every paper you submit: “T-106.5221, August 26th, 20117, your full name,
student ID and study programme, and the total number of papers you submit,.

1. (6p) Explain the following concepts briefly:

(

(b)
(c)
(d)
(e)
(f)

a) WAL (write-ahead logging) protocol

phantom phenomenon
“steal” buffering policy
latch-coupling
unrepeatable read
update-mode lock (U-lock)

2. (6p) We apply the key-range locking protocol. What locks are acquired by the transactions in the following
histories and when are these locks released? Are the histories possible under the key-range locking protocol?
What isolation anomalies (dirty writes, dirty reads, unrepeatable reads) do the histories contain? In all cases,
the database is initially empty.

(a)
(b)
(c)

By 11[5| B2 1o[7]CaBaLs[3]C5 11 9]C
B11[5]C1Ba Ry [5, > 213313[3]C3I2[7]Cz
By 11 [5]C1B213[9] D2 (5] B3I3[5]CsCo

3. Relation R(A, B,C, D) has a sparse index (a B*-tree) on the pair of attributes AB (a unique key of R) and
a dense static hash-table index on attribute C. (a—c) (3p) How can these index structures be utilized in the
implementation of the following operations?

(a)
(b)
(c)
(d)

4.(a—c)

(e)

select D from R where A =12 and B < 8;
select * from R where A > 59 and C < 400;
select * from R where C' = 35;

(3p) Let us execute the following operation:

insert into R values (15,20,35,40);

Assume that the B¥-tree mentioned above has height 4, and all of its nodes are as full as possible before
the insertion — thus, some nodes need to be split. What structure modifications are done to the tree,
and in what order? Which pages of the tree are latched, and when is each latch released? The course
discussed several possible answers to these questions; you can choose any one of the methods described
on the course for your answer.

(3p) The transaction T' generated from the following program fragment is run concurrently with other
transactions.

set transaction isolation level L;

begin transaction;

select avg(V) into :a from r;

select sum(V') into :s from r;

select count(x) into :c from r;

insert into g values (:a, :s / :¢);

commit transaction.

How can the result produced by transaction T vary when (a) L = “read committed”, (b) L = “repeatable
read”, (c) L = “serializable”? We assume that all other transactions that possibly run concurrently with
T have isolation level “read uncommitted”, at least.

(2p) Assume that L = "serializable” and that all other concurrent transactions have the isolation level
"cursor stability”. Is it possible for transaction T' to work more efficiently in this situation, when compared
to the situation where L = "serializable” and all others have the isolation level "repeatable read”? Why

or why not?
(Ip) On which isolation levels can the Commit-LSN mechanism be used?

(problem 5 is on the next page)



5. (6p) The contents of the log on disk at the time of a system crash are the following:

101: (begin-checkpoint)

102: (transaction-table, {})

103: (page-table, {})

104: (end-checkpoint)

105: (T}, B)

106: (Ty,1,p,11,5,105)

107: (T3, B)

108: (T, 1,p, 15,6, 107)

109: (T, C)

110: (T3, B)

111: (T3,1,p,16,2,110)

112: {T1,1,p, 19,1, 106)

113: {T3,D,p, 15,6,111)

114: (T, A)

115: (T3, DY, p,15,6,111)

What actions are involved in restart recovery when using the ARIES algorithm? What log records are generated
and when is the log forced to disk? Assume that Page-LSN = 108 in the disk version of p. We assume that all
inverse operations in the undo pass can be performed physically.



