T-106.5600 Concurrent Programming Examination March 2011/ hsa
Be concise and clear. The shorter you can be, the better.

1. Give all possible final values of the variable x after executing the following program. Explain your answer.

Assume that all the assignments “x = .. ;" tox are executed as atomic actions.
int X =0; gem gl =1, g2 = 0;
co P(s2); x =x + 7; P(sl); x = 2 * x; V(sl); #pl
// P(sl); x =X+ 5; V(s2); x =5 * x; Visl); #p2
// P(sl); x =17 *

X; P(s2); x =x + 3; V(s2); x = 11*x; V(sl): #p3
ocC

2. Petterson’s algorithm for two processes critical section problem.

Algorithm 3.13: Peterson’s algorithm
boolean wantp « false, wantq « false
integer last « 1
P q
loop forever loop forever
pl: non-critical section ql non-critical section
p2: wantp + true g2, wantq + true
p3: last « 1 q3. last « 2
pd: await wantq = false or qd: await wantp = false or
last = 2 last = 1
p5: critical section g5: critical section
pé; wantp + false ab: wantq + false

(a) Show that the algorithm is safe by proving and using the invariants:
(1 (p4 A g5) => wantg A (last = 1)
2) (p5 A g4) => wantp A (last =2)

(b) Prove the liveness of process p by proving following formulas and using them to deduce a contradiction:
3) p4d A [J=p5S => [JO(wantgn (last # 2)) “whenever p4 is executed, the condition is false”
4 0 J(—wantq) v ¢ (last=2) “either g stays at q1 (NCS), or it tries to enter CS”
(3) pd A [J=p5nA O(last=2) => ¢ [J{ast=2) “if pstays at p4, and last = 2, it stays so”

Legend: [JA reads: A holds always. OA reads: "Eventually A”, i.e. there will be a moment when A holds.

3. A long single-track railway loop connects N stations. There can be at most one train on the track between two
stations. Stations have two parallel tracks capable of hosting X trains to each direction so that the trains to opposite
directions may pass each other. Consecutive trains to each direction go automatically to their own tracks and do
not collide to each other. Because trains can’t back off, they must be synchronized with semaphores against head-
on collision and deadlocks. Introduce necessary general semaphores with proper initializations and fill in their P()
and V() operations to the following train code. Initially all the T trains on both directions are evenly distributed to
“stay” on stations. Because of symmetry, the solution to one direction suffices. Analyze your solution for different
values of K,and T: 2) T<K, b) K<T<K*N, c¢) T=K*N.

while true{ _B_@__ vis .G
stay_on_station(i);

i=(i+1)mod N;
enter_track(i); i

run_on_track(i); i
leave_track(i); =
}

4. Symmetric solutions for the five dining philosophers problem using tuplespace. a) Solve the problem using one
tuple, where the statuses of all the forks are stored, b) Solve the problem using a tuple for each fork separately, and
in order to prevent deadlock, add one extra tuple to store the number of philosophers in the dining room, c) Try to
solve the problem using one tuple where the statuses of all the philosophers are stored. Discuss the pros and cons
of each solution. Define clearly the meaning of the different tuple types used and attach appropriate tags to them.
The get_to_eat() and end_eat() operations should be simple algorithms without loops, and not using any other
global variables except tuples. Linda tuple-space primitives are: postnote (° tag’, ..}, readnote

(*tag’, .}, removenote (‘tag’,..).Indicateclearlyina readnote{(.),or removenote (..) operation
when a matching tuple with an element value equal to a program variable value is sought for (syntax ““ v=*), from
the case where an element value of a otherwise matching tuple is just assigned to a program variable (syntax «
v*).

5. One-lane bridge. Cars coming form north and south have to cross a river along a very long and narrow one-lane
bridge. Cars driving to the same direction may be on the bridge at the same time, but cars heading to opposite
directions can’t. Consider the following generic monitor solution One_lane bri dge to the problem, where the
cars are processes calling the public methods cross_from North () and cross_from_South() .

a) Prove or disprove that the solution is safe and can’t cause a deadlock using signal_and_wait or signal_and-
continue -semantics. b) Transform it to a similar Java version, ¢} Provide a fair version of either a) or b), so that
cars from each direction will get served in finite time.

moniter One_lane_bridge {

int ns =0; //north-south cars on the bridge
int sn =0; //south-north cars on the brigde
cond ns_c: //condition to enter from north
cond sn_c; //condition to enter from south

private procedure startNorth() (
if {(sn > 0) wait(ns _c);
ns++
}
private procedure endSouth() {
ns--;
if (ns == 0} signal_all(sn_c)); //signals possible waiting sn cars
}
public cross_from North() { // this is needed to provide a simpler APT
startNorth() ;
// north-south crossing operation is embedded here
endSouth () ;
}

// the south-north direction is symmetric

