Quantum physics TFY-3.4323 Final examination 15 May 2009

Final examination

- 1. Consider a single particle in the ground state of a one-dimensional box of length L with infinite walls (i.e. a potential of the form V(x) = 0 when $0 \le x \le L$ and $V(x) = \infty$ otherwise). Describe the time evolution of the system when the length of the box is expanded from L to 2L
 - a) adiabatically.
 - b) suddenly.

(Here you probably end up with some tricky integrals containing products of trigonometric functions. This form is enough for your answer and you do not need to evaluate these integrals.)

- c) Discuss the validity of these two approximations if instead of an expansion the size of the box shrinks from L to $\frac{1}{2}L$.
- 2. A coherent state of a bosonic many-body system is given by

$$|\Psi\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle_{\text{Fock}},$$

where $|n\rangle_{\text{Fock}}$ is the Fock state in which *n* particles have been created in some single-particle state *i* (lets denote that single-particle state *i* = 0), i.e. $|n\rangle_{\text{Fock}} = \mathcal{N}\left(c_0^{\dagger}\right)^n |0\rangle$, where $|0\rangle$ is the vacuum state with zero particles.

- a) Find a proper normalization \mathcal{N} for the Fock state $|n\rangle_{\text{Fock}}$ and calculate the norm of the coherent state $\langle \Psi | \Psi \rangle$.
- b) Find the number of particles in the coherent state $\langle \Psi | c_0^{\dagger} c_0 | \Psi \rangle$.
- c) Find the variance of the number of particles in the coherent state $\langle \Psi | c_0^{\dagger} c_0 c_0^{\dagger} c_0 | \Psi \rangle (\langle \Psi | c_0^{\dagger} c_0 | \Psi \rangle)^2$.

TURN THE PAPER!

- 3. Assume a system with the Hamiltonian $H = Ec^{\dagger}c$, where $c^{(\dagger)}$ is the annihilation (creation) operator of a fermionic or a bosonic particle in some single-particle state $|\phi\rangle$ (and for the sake of simplicity we limit ourselves to a single state). Let us define a density matrix $\rho = \frac{1}{Z}e^{-\beta H}$.
 - a) Find the normalization coefficient Z and calculate the average occupation number $\langle c^{\dagger}c \rangle = \text{Tr} \{\rho c^{\dagger}c\}$ when the particles (and hence the *c* operator) are fermions.
 - b) Find the average occupation number $\langle c^{\dagger} c \rangle$ when the particles are bosons.
 - c) Give an example of a density matrix of a physical state which can not be described by a single state vector (i.e. wavefunction). Show that this is indeed the case for your example.
- 4. a) Explain in a few sentences what a quantum bit (qubit) is. Give an example of an experimental realisation of a quantum bit.
 - b) What is the no-cloning theorem? What are its implications for quantum computing?
 - c) Prove the no-cloning theorem.
- 5. Explain in a few sentences:
 - a) Dipole approximation,
 - b) Avoided crossing,
 - c) Quantum phase transition,
 - d) Cooper pair.