

S-72.3216 Radio Communication Systems II P (5 cr)

Exam (15th December, 2011)

Comnet

Exc.	Problem 1	Problem 2	Problem 3	Problem 4	Problem 5	Sum
max.	6	6	6	6	6	30
pts.						

Problem 1. (General concepts within W-CDMA and HSPA technologies) Answer to the following questions:

- (a) In UTRAN architecture some interfaces are "open". Explain briefly what is an "open interface", and why "open interfaces" are introduced in UTRAN.
- (b) What is the purpose of using spreading codes and scrambling codes in W-CDMA? What are the main differences between spreading and scrambling code usage in both, W-CDMA uplink and downlink?
- (c) Why is it important for user terminals to be able to receive in a proper way the *primary common pilot channel* (P-CPICH) of a W-CDMA network?
- (d) Name and describe at least <u>three</u> important differences between W-CDMA downlink and HSDPA.

Problem 2. (Multi-antenna methods in W-CDMA/HSPA/LTE/LTE-Advanced) Are the following statements right or wrong? Answer just T/F (i.e., True or False). No justification of the chosen alternative is required.

- (a) The HSDPA open-loop transmit-diversity method provides both, diversity gain and coherent combining gain.
- (b) In W-CDMA/HSDPA conventional beamforming, the control overhead is decreasing as the number of fixed beams grows.
- (c) The HSDPA closed-loop transmit-diversity method needs two orthogonal P-CPICH for channel estimation.
- (d) In HSDPA, up to four transmit antennas can be used for closed-loop transmit-diversity purposes.
- (e) In both LTE and LTE-Advanced, the number of spatial multiplexing (SM) multiple-input multiple-output (MIMO) data streams in uplink can be four.
- (f) In HSDPA, closed-loop transmit-diversity methods always outperform open-loop transmit-diversity methods for users in rural areas.

- (g) In LTE the number of SM-MIMO data streams can be four in downlink, while in LTE-Advanced it can be up to eight.
- (h) Multiuser MIMO (MU-MIMO) is not supported by LTE, but it is supported by LTE-Advanced.

Evaluation criterion:

8 correct answers \rightarrow 6 points, 7 correct answers \rightarrow 5 points, 6 correct answers \rightarrow 4 points, 5 correct answers \rightarrow 3 points, 4 correct answers \rightarrow 2 points, 3 correct answers \rightarrow 1 points, less than 3 correct answers \rightarrow 0 points.

Problem 3. (HSPA link budget)

Fill missing fields (A)-(F) of Table 1, for a 512 [kbps] service on HS-DSCH. Give your results in the answer paper, and explain how were they obtained.

Table 1: HSPA link budget (HS-DSCH 512 [kbps])

Transmitter Characteristics	
Transmitter power on HS-DSCH [Watts]	10.00
Transmitter power on HS-DSCH [dBm]	(A)
Tx antenna gain [dBi]	17.40
Tx cable loss [dB]	2.00
Transmitter EIRP [dBm]	(B)
Receiver Characteristics	
Thermal noise density [dBm/Hz]	-173.98
Receiver noise figure [dB]	8.00
Receiver noise density [dBm/Hz]	-165.98
Receiver noise power [dBm]	-100.13
Spreading gain [dB]	(C)
SINR [dB]	5.00
Receiver sensitivity [dBm]	(D)
Load factor [%]	80.00
Interference margin [dB]	(E)
Rx antenna gain [dBi]	3.00
Rx body loss [dB]	0.00
Diversity gain [dB]	0.00
Fast fading margin [dB]	0.00
Soft handover gain [dB]	0.00
Indoor penetration loss [dB]	20
Shadow fading margin [dB]	8.00
Allowed propagation loss [dB]	(F)

Problem 4. (HSPA and LTE concepts)

- (a) Describe briefly the principle of maximum carrier-to-interference power ratio (CIR) scheduler and proportional fair (PF) scheduler. Why do these methods usually give a better performance in LTE rather than in HSDPA?
- (b) Explain the principle of hybrid automatic repeat request (H-ARQ) protocol, and describe briefly how incremental redundancy algorithm and chase combining algorithm work.
- (c) User data rate is doubled in LTE uplink without changing the modulation and coding scheme. What happens to the user bandwidth?
- (d) Why is SC-FDMA receiver usually more complex than OFDMA receiver?

Problem 5. (LTE-Advanced concepts)

Answer briefly to the following questions:

- (a) Coordinated multipoint (CoMP) transmission: Describe joint processing and coordinated scheduling/beamforming. What is the main difference between both techniques?
- (b) Carrier aggregation (CA): Describe intra-band aggregation with contiguous carriers, intra-band aggregation with non-contiguous carriers, and interband aggregation. Which case is simpler to implement in practice? Justify your answer in a simple, but clear way.
- (c) Relaying: Describe *in-band relaying* and *out-band relaying*. What are the main differences between both types of relaying approaches?

Some Abbreviations

 $\label{eq:HS-DSCH} \text{High Speed Downlink Shared Channel},$

MU = Multi-User,

MIMO = Multiple-Input Multiple-Output,

P-CPICH = Primary Common Pilot Channel,

SM = Spatial Multiplexing,

UTRAN = Universal Terrestrial Radio Access Network.