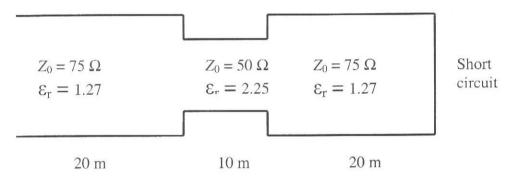

Aalto/TKK/LH

S-72.3310 Transmission Media in Communications EXAMINATION 23.5.2011

ONLY <u>FIVE</u> BEST ANSWERS ARE TAKEN INTO ACCOUNT Lecture and exercise material can be freely used in examination.

1. A repeater section of a cable television system is about 400 m and attenuation (vaimennus) at 400 MHz is 24 dB. At a 100 m distance from the end of the repeater section there is a reflection point, which return loss (heijastusvaimennus) is $A_{r2}=16$ dB. The return loss of the repeaters at both ends of the repeater section is 14 dB (= A_{r1} = A_{r3}). Calculate the worst case forward echo attenuation (Mitfluss-Dämpfung, myötävuovaimennus) caused by the reflections A_{r1} , A_{r2} and A_{r3} . All reflection coefficients are resistive. The reflection losses (sovitusvirhevaimennukset) A_{s} are not taken into account.

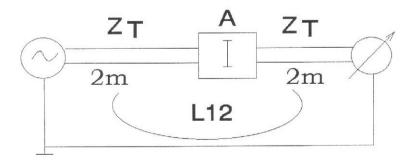

- 2. Estimate the effect of structural inhomogeneity (rakenteellinen epähomogeenisyys) to the transmission properties of a 36.5dB (4.2 Np) attenuating repeater section. The periodic structural inhomogeneity gives a spike which return loss measured from the near-end is $A_p = 15 \text{ dB}$. (1 Np = 8.7 dB or 1 dB = 0.115 Np).
 - a) What is the forward echo attenuation (Mitfluss-Dämpfung, myötävuovaimennus) $A_{\mathbf{q}}$?
 - b) What is the maximum capacity C [bit/s/Hz] which could be achieved if the corresponding forward echo were white noise with a signal to noise ratio $S/N = A_q$?
 - c) What would the **maximum capacity** [Mbit/s] of a $Cat \ 6_A$ data cable be with the above S/N?

Ref.: According to Shannon $C \approx \frac{1}{3} \left(\frac{S}{N} / dB \right)$ [bit/s/Hz].

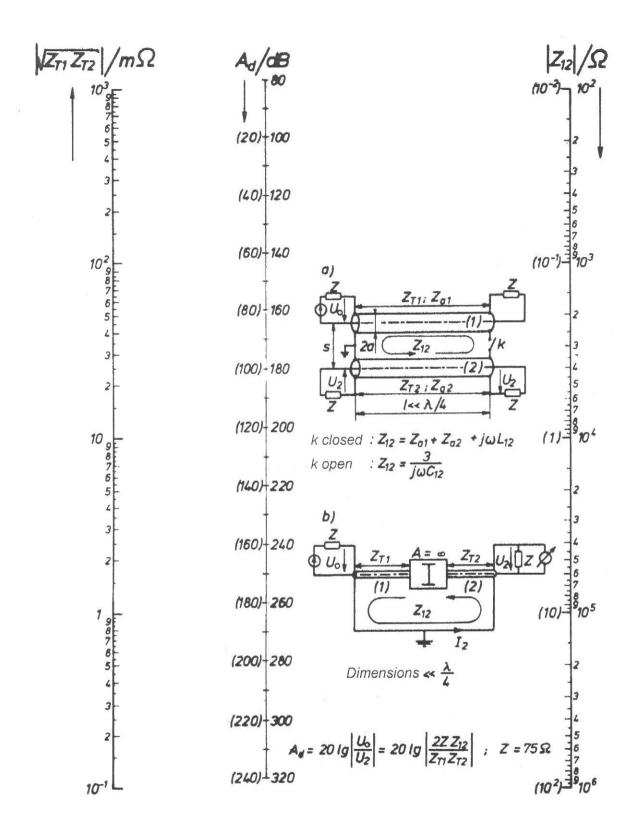
- 3. The power levels of -31 dBm and -62 dBm were measured at the far-end of the disturbing (1) and disturbed (2) line, correspondingly. At the near-end of line (2) the measured power level was -54 dBm. Both lines are identical and their attenuation is 25 dB. All impedances are Z=100 ohm. Define, calculate and draw a picture for:
 - a) NEXT, Near-end crosstalk (A_n)
 - b) FEXT, Far-end crosstalk (A_f)
 - c₁) EL-FEXT, equal level far end crosstalk (△_f)
 - c₂) ACR-F, Attenuation to crosstalk Ratio at the Far-end
 - c_{3a}) "S/N-F", Signal to crosstalk Noise ratio at the Far-end
 - c_{3b}) the maximum capacity C [bit/s/Hz] which could be transmitted due to "S/N-F"
 - d) the transmitted power of the generator.

Ref.: According to Shannon $C \approx \frac{1}{3} \left(\frac{S}{N} / dB \right)$ [bit/s/Hz].

4. The lossless line below is measured with a) 50 ns (half amplitude) sin²-pulse and with b) 50 ns (10 % to 90% amplitude) rise time step.



Draw the a) pulse response and b) step response and provide the figure with time and amplitude scale.


- c) What is the mathematical relation between step response and pulse response?
- d) How do the pulse and step responses change if the 10 m cable is shortened from 10 to 3 m?

Guidance: Compare Part L8: Chapter 8.4 and Figs 8.4-8 and 8.4-9.

5. What should be the maximum resulting transfer impedance Z_T of the 2 m test leads (cable assemblies) if we like to measure 80 dB attenuation at 4 MHz with an accuracy of 0.1 dB? The system impedance $Z=75~\Omega$ and the ground loop inductance $L_{12}=1\mu\text{H}$.

The attached monogram can be used.

