S-72.3410 Coding Methods

- 1. Consider the convolutional encoder shown above.
 - (a) (3p.) Find the output sequence if the input sequence is (1100101).
 - (b) (2p.) Draw the state diagram of the encoder.
 - (c) (1p.) Find the minimum free distance d_{free} .
- 2. (6p.) One generator matrix of a linear block code is

$$\mathbf{G} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

- (a) (1p.) Find a systematic generator matrix of the form $G_{\rm syst} = [P \mid I]$ for this code.
- (b) (2p.) Find a parity-check matrix **H** for this code and draw the Tanner graph corresponding to the matrix that you obtained.
- (c) (2p.) Construct a syndrome table for this code.
- (d) (1p.) What is the minimum distance d_{\min} of this code?
- 3. (a) (3p.) What are the possible dimensions of a binary cyclic code of length 37? What about the possible dimensions of a 16-ary cyclic code of length 37? Justify your answers.
 - (b) (3p.) Find the generator polynomial of a two-error-correcting 128-ary cyclic code of length 127. Express the coefficients of the generator polynomial as powers of a primitive element of GF(128). *Hint:* vector space representations of the elements of a certain Galois field may be useful here.

4. Introduction. Half-rate invertible block codes can be constructed as follows. First, we need an (n, k) cyclic code with n - k < k. If systematic encoding is used, the data digits are at the end of the codeword. Hence, we can shorten the code by first selecting those codewords for which the last 2k - n bits are zeros and then deleting these 2k - n zeros from each selected codeword. The resulting set of codewords have the length n - (2k - n) = 2(n - k), and the dimension of the new code is k - (2k - n) = n - k. It can be shown that this kind of shortened half-rate codes have the desired invertible property: when systematic encoding is used, no two codewords have the same parity-check digits.

The encoding with the shortened [2(n-k), n-k] code works in the same way as with the original (n,k) code, except that the incoming data block is of length n-k instead of k digits. The generator polynomial g(x) of the original (n,k) code is used. If the data polynomial is $u(x) = u_0 + u_1 x + \cdots + u_{n-k-1} x^{n-k-1}$, then the systematic codeword is, as we know,

$$w(x) = b(x) + x^{n-k}u(x),$$

where b(x) is the parity-check portion of the codeword and obtained in the usual way. It can be shown that the inversion process is very similar to computing the parity-check digits in the systematic encoding. Namely, if we know b(x), then the corresponding data polynomial is obtained as the remainder when $b(x)x^k$ is divided by g(x).

Problem. As an application of the theory presented above, let us consider a type-II hybrid ARQ protocol of the kind that was discussed at the end of the last lecture. We assume that the messages are 8 bits long. First, the 8-bit data block is encoded systematically into a 12-bit word P_1 by using as the code C_1 the CRC-4 code whose generator polynomial is $g_1(x) = 1 + x + x^4$. The second code C_2 is taken to be the invertible (24,12) code obtained by shortening the (63,51) primitive BCH code, whose generator polynomial $g_2(x)$ has the octal representation 12471 (see e.g. Appendix E of [Wic]). The parity block P_2 is then computed in the usual way of systematic encoding, with P_1 as the input data and $g_2(x)$ as the generator polynomial.

At the receiving end, for any received 12-bit block \tilde{P}_2 , the inversion procedure can be carried out producing another 12-bit block \tilde{P}_1 . Whether the latter block is a codeword in C_1 , must then be checked.

- (a) (3p.) If the message polynomial is $m(x) = 1 + x^4 + x^7$ (i.e. the message block is 10001001), find $P_1(x)$ and $P_2(x)$ (i.e., the blocks P_1 and P_2 in the polynomial form).
- (b) (3p.) Try to solve m(x) if $P_2(x) = 1 + x + x^2 + x^3 + x^5 + x^7 + x^8 + x^9 + x^{11}$.