

1. Unpolarized light in water (n = 1.33) is incident on a plate of glass (n = 1.5). The reflected light is completely polarized.

- b) What is the angle of incidence?
- c) What is the polarization orientation for the polarized reflection?

- 2. a) How does the index of refraction of transparent materials behave as a function of the wavelength of light? Explain. (1.5 points)
 - b) How does the index of refraction of a dielectric medium find an explanation through the process of light scattering? (1.5 points)
 - c) A nonmagnetic medium has a dielectric constant that depends upon frequency w and is given by $\varepsilon = \varepsilon_0 (1 A/\omega^2)$, where A is a positive constant and ε_0 is the permittivity of free space.
 - (i) Write down the dispersion relation for an electromagnetic wave, which expresses ω as a function of wave number k. (1 point)
 - (ii) Find the critical frequency below which a wave launched into the medium will not propagate through the medium, but rather will be evanescent or decaying. (*I point*)
 - (iii) Calculate the propagation distance over which the amplitude of the wave decays by a factor of *e*. (*1 point*)
- 3. An electromagnetic plane wave $E_{\rm I}$ traveling in medium n_1 is incident normally on medium n_2 . It produces a reflected wave $E_{\rm R}$ and a transmitted wave $E_{\rm T}$.
 - a) Using the Poynting flux $S = E \times H$, derive an expression for S in terms of ε_0 , c, n and E.
 - b) Using the expression derived in a), and the conservation of S ($S_I = S_R + S_T$), derive the flux relation between E_I , E_R and E_T ; the incident, reflected and the transmitted fluxes.
 - c) Using the result from b) and the tangential boundary conditions on E at the interface, derive expressions for $r = E_R/E_I$ and $t = E_T/E_I$ in terms of n_1 and n_2 $(n_2 > n_1)$.
 - d) Rewriting the relation found in b) in the form R + T = 1 where R and T are the reflection and transmission coefficients, show that $R = r^2$ and $T = (n_2/n_1)t^2$.

4. A circular lens in an earth satellite at 100 km height focuses images of objects on the ground onto a photographic film. The diameter of the lens is 0.5 m, its focal length 1 m, and the wavelength of the light recorded is 550 nm.

The image formed on the photographic film will be blurred. Two reasons for this are:

- (1) the graininess of the photographic film, and
- (2) diffraction by the lens aperture.

If the graininess of the film blurs the image of a point over a distance of 10 μm , which of the two sources of blurring will be more important? Give a quantitative reason for your answer.

- 5. (a) Write the rate equations for a two-level system, showing that a steady-state population inversion cannot be achieved by using direct optical pumping between the levels.
 - (b) Consider a three-level system which is pumped into level 3 in order to obtain an inversion between levels 2 and 1. Find the population inversion $\Delta N = N_2 N_1$ as a function of the total number of atoms N, the pump rate Γ and the relaxation rates γ_{21} , γ_{31} , and γ_{32} . Show that if $\gamma_{32} \gg \gamma_{31}$, the inversion is achieved when $\Gamma > \gamma_{21}$.