T-106.5600 Concurrent Programming Examination March 2012/ hsa

Be concise and clear. The shorter you can be the better. The simplicity of the solutions and answers is an
important grading criterion! NOTE: There are only 4 questions in this exam!

1. Prove with proper invariants that the following simple two-process version of the bakery algorithm for the
critical section is safe.

Algorithm 5.1: Bakery algorithm (two processes)
integer np « 0, nq « 0
P q
loop forever loop forever

pl: non-critical section ql: non-critical section
p2: np « nq+1 q2: ng+— np+1
p3: await nqg = 0 or np € nq q3: await np = 0 or ng < np
pé: critical section q4: critical section
p5: np « 0 q5: ng« 0

Does it satisfy the necessary liveliness requirements? Prove this with temporal logic or disprove with a
contradicting example.

Analyze the atomicity of its statements. Are they minimal to achieve safety, or could they be broken to
smaller ones?

2. A bounded buffer is frequently implemented as a circular buffer, which is an array indexed modulo its
length. The index variable in points to the next empty space for a producer and out the next full for a
consumer (see the picture below on the left). Prove with proper invariants that the following algorithm, where
synchronization between a producer and a consumer is solved with semaphores works correctly.

Algorithm 6.19: Producer-consumer (circular buffer)
dataType array [0..N] huffer
integer in, out « 0
semaphore notEmpty «~ (0. %)
semaphare notFull « (N, #)

P producer consumer
o / il dataType d dataType d

_* t loop forever loop forever |
B QU pl: d «~ produce gk wait(notEmpty) f

p2 wait(notFull) g2 d « bufferfout]

j A 7 3 bufferfin] ~ d g% out « (out+1) modulo N
T <] T pa: in « (in+1) modulo N g4 signal(notFull)
ik i ps: signal(notEmpty) g5 consume(d)

Analyze the situation if several producers and consumers access the buffer at the same time. Is it still correct
or should it be enhanced and how?

One-lane bridge. Cars coming form north and south have to cross a very long and narrow one-lane bridge.
Cars driving to the same direction maybe on the bridge at the same time, but cars heading to opposite
directions are not allowed. Consider the following Java code outline for the solution to the problem, where
the cars are threads calling the public methods cross_from_North()and cross_from_South() of
the class One_lane_bridge. Complete the missing peaces of the synchronization logic using Java, Do
not worry about the performance or faimness first, however the directions should be treated symmetrically.
Be clear when defining the needed variables! Write down two invariants specifying:

1) There can be several cars on the bridge at the same time, but they must all head to the same direction.

2) There is no unnessary waiting. Give an argument that both of them they are preserved.

class One_lane_bridge ({
private synchronized void startNorth() (

) i

private synchronized void endSouth() (

}

public void cross_from _North() {
startNorth();
// north-south crossing operation is embedded here
endSouth();

}
// south_north crossing is symmetrical

}

}

Analyze the performance of your solution and suggest potential improvements to it.
Analyze the faimess of your solution and suggest potential improvements to it.

Tuple Space. Write a tuple-space solution to the one-lane bridge problem. Define clearly the meaning of the
different tuple types used and attach appropriate tags to them. No global variables except tuples should be
used. The simpler your solution is, the better. Discuss the pros and cons of your solution. Use tuple-space
operations: postnote (‘tag’, ..), readnote (‘tag’, ..), removenote (‘tag’,..).
Indicate clearly ina readnote(..),or removenote (..)operation when a matching tuple containing
element equal to the value of a program variable v value is sought for with syntax *“ v=" from the case
where an element value of an otherwise matching tuple is just assigned to a program variable (syntax “ v*).

Analyze the faimess of your solution and suggest potential improvements to it,

